Miracle lab 奇迹实验室
  • 文章来源:MIRACLE奇迹
  • 阅读次数:2794
  • 2022-12-09

团队负责人:

周少华 教授 


MIRACLE中心主任、中科院学术帅才

美国国家学术发明院院士

IEEE&AIMBE&MICCAI  Fellow

      医学影像、机器人与智能分析(MIRACLE) 奇迹实验室于2018年6月成立, 隶属中科院智能信息处理重点实验室,是中国科学技术大学苏州高等研究院医学影像智能与机器人研究中心的一部分。目前主要成员包括教授1名、特任副研究员2名、博士后4名和学生近60名。

团队成员:

谢希科(特任研究员)、赵上(特任副研究员)刘克飞(特任副研究员)、蒋子航(特任副研究员)

王秋里(博士后)张月(博士后)李凯彦(博士后)张梦鸽(博士后)、颜锐(博士后)

李涵(博士研究生)徐梓康(博士研究生)赵明月(博士研究生)邓阳(博士研究生)王琪元(博士研究生)赖浩然(博士研究生)王春江(博士研究生)雒鑫(博士研究生)卜旺(博士研究生)顾云洁(博士研究生)、汤丰赫(博士研究生)、付学明(博士研究生)、孙岱(博士研究生)朱河勤(博士研究生)姚青松(博士研究生)、李珺(博士研究生)全权(博士研究生)黎雨佳(博士研究生)

李沂蔚(硕士研究生)娄义(硕士研究生)陈子豪(硕士研究生)阮宏雁(硕士研究生)吴迪(硕士研究生)刘远东(硕士研究生)蒲俊廷(硕士研究生)包承恺(硕士研究生)张号(硕士研究生)黄震(硕士研究生)胡惠杰(硕士研究生)王嵘晟(硕士研究生)王嘉坤(硕士研究生)马俊华(硕士研究生)徐亦尧(硕士研究生)张钊(硕士研究生)李岚(硕士研究生)邱泓屿(硕士研究生)高子淇(硕士研究生)金睿阳(硕士研究生)李英泰(硕士研究生)吴敬一(硕士研究生)杨帆(硕士研究生)周小骞(硕士研究生)杨闻笛(硕士研究生)丁贵州(硕士研究生)何旭(硕士研究生)李鸿伟(硕士研究生)李振浩(硕士研究生)张磊(硕士研究生)邹威(硕士研究生)陈晟皓(硕士研究生)缪祥其(硕士研究生)石佳鑫(硕士研究生)张琳(硕士研究生)赵沛昂(硕士研究生)陈龙(硕士研究生)、黄哲龙(硕士研究生)、张旭(硕士研究生)、马雯芯(硕士研究生)、高博文(硕士研究生)、叶宏波(硕士研究生)、常一凡(硕士研究生)、边明豪(硕士研究生)、吴沛(硕士研究生)、吴俣歆(硕士研究生)、赵德馨(硕士研究生)、王柏智(硕士研究生)、杜鸣磊(硕士研究生)、唐锡铭(硕士研究生)

主要研究内容:

研究:聚焦医疗影像设备、医疗机器人和影像智能分析计算等学科方向,开展前沿性、基础性、原创性和应用型研究,发表高质量学术论文;

合作:与国内外知名医院、医疗企业和研究机构建立广泛合作,以促成前沿技术落地为核心,发展“产、学、研”相结合的合作模式;

人才:探索新型人才培养模式,构建充足和互补的人才梯队,培育具有广阔国际视野的优秀专业技术人才。

  • (1) 医学影像(前瞻性)

(2)开源共享(基础性)

(3)影像分析(原创性)



(4)手术治疗(应用型)

  

近期主要研究论文:

1. Y Du, Q Quan, H Han, and S Kevin Zhou. Semi-supervised pseudo-healthy image synthesis via confidence augmentation. IEEE International Symposium on Biomedical Imaging (ISBI), 2022.

2. L Yang, H Han, and S Kevin Zhou. Deep nonlinear embedding deformation network for cross-modal brain MRI synthesis. IEEE International Symposium on Biomedical Imaging (ISBI), 2022.

3. X Liu, J Wang, C Peng, S Chandra, F Liu, and S Kevin Zhou. Undersampled MRI reconstruction with side information guided normalization. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022.

4. Z Zhao, F Zhou, Z Zeng, C Guan, and S Kevin Zhou. Meta-hallucinator: Towards few-shot cross-modality cardiac image segmentation. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022.

5. J Zhu, Y Li, L Ding, and S Kevin Zhou. Aggregative self-supervised feature learning from limited medical sample. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022.

6. C Peng, P Guo, S Kevin Zhou, V Patel, and R Chellappa. Towards performant and reliable undersampled MR reconstruction via diffusion model sampling. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022. (oral)

7. R Liu, Q Ma, Z Cheng, Y Lyu, J Wang, and S Kevin Zhou. Stabilize, decompose, and denoise: Selfsupervised fluoroscopy denoising. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Singapore, 2022.

8. X Wu, S Yang, Z Qiu, S Ge, Y Yan, X Wu, Y Zheng, S Kevin Zhou, L Xiao. DeltaNet: Conditional medical report generation for COVID-19 diagnosis. International Conference on Computational Linguistics, 2022.

9. J Wei, S Wang, Z Li, S Kevin Zhou, and S Cui. Weakly supervised object localization through interclass feature similarity and intra-class appearance consistency. European Conference on Computer Vision (ECCV), 2022.

10. B Zhou, X Chen, S Kevin Zhou, JS Duncan, and C Liu. DuDoDR-Net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography. Medical Image Analysis, 75:102289, January 2022. (PMID: 34758443, DOI: 10.1016/j.media.2021.102289)

11. F Yang, J Zhu, J Wang, L Zhang, W Wang, X. Chen, X Lin, Q Wang, D Burkhoff, S Kevin Zhou, and K. He. Self-supervised learning assisted diagnosis for mitral regurgitation severity classification based on color Doppler echocardiography. Annals of Translational Medicine, Vol. 10 No. 1, January 2022.

12. L Han, Y Lyu, C Peng, and S Kevin Zhou. GAN-based disentanglement learning for chest X-ray rib suppression. Medical Image Analysis, 77:102369, April 2022, 102369. (DOI: 10.1016/j.media.2022.102369)

13. H Zhu, Q Yao, L Xiao, and S Kevin Zhou. Learning to localize cross-anatomy landmarks in X-ray images with a universal model. BME Frontiers, 2022.

14. S Yang, X Wu, S Ge, S Kevin Zhou, and L Xiao. Knowledge matters: Chest radiology report generation with general and specific knowledge. Medical Image Analysis, 80:102510, August 2022.

15. B Zhou, X Chen, H Xie, S Kevin Zhou, JS Duncan, and C Liu. DuDoUFNet: Dual-domain under-tofully-complete progressive restoration network for simultaneous metal artifact reduction and low-dose CT reconstruction. IEEE Trans. on Medical Imaging, 2022.

16. B Zhou, T Miao, et al. S Kevin Zhou, JS Duncan, and C Liu. Federated transfer learning for low-dose PET denoising: A pilot Study with simulated heterogeneous data. IEEE Trans. on Radiation and Plasma Medical Sciences, 2022.

17. Z Zhao, F Zhou, K Xu, Z Zeng, C Guan, and S Kevin Zhou. LE-UDA: Label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Trans. on Medical Imaging, 2022. (accepted)

18. Han Li, Long Chen, Hu Han, and S. Kevin Zhou. SATr: Slice Attention with Transformer for Universal Lesion Detection. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 163-174, Singapore, Sept. 18-22, 2022.

19. Zhu, Heqin, Qingsong Yao, Li Xiao, and S. Kevin Zhou. “Learning to Localize Cross-Anatomy Landmarks in X-Ray Images with a Universal Model.” BME Frontiers 2022 (2022).

20. Sun, Yihua, Qingsong Yao, Yuanyuan Lyu, Jianji Wang, Yi Xiao, Hongen Liao, and S. Kevin Zhou. “Rib Suppression in Digital Chest Tomosynthesis.” International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 696–706, Singapore, Sept. 18-22, 2022.

21. Pengbo Liu, et. al. and S. Kevin Zhou. Learning Incrementally to Segment Multiple Organs in a CT Image. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 714-724, Singapore, Sept. 18-22, 2022.

22. Han Li, Long Chen, Hu Han, and S. Kevin Zhou. SATr: Slice Attention with Transformer for Universal Lesion Detection. International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 163-174, Singapore, Sept. 18-22, 2022.

23. Jun Wei, Yiwen Hu, Guanbin Li, Shuguang Cui, S Kevin Zhou, Zhen Li. BoxPolyp: Boost Generalized Polyp Segmentation Using Extra Coarse Bounding Box Annotations. International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI), pp. 67-77, Singapore, Sept. 18-22, 2022

24. Jun Wei, Sheng Wang, S Kevin Zhou, Shuguang Cui, Zhen Li. Weakly supervised object localization through inter-class feature similarity and intra-class appearance consistency. European Conference on Computer Vision(ECCV), pp. 195-210, Tel Aviv, Oct. 25-27, 2022

25. L. Han, Y. Lyu, C. Peng, and S. Kevin. Zhou, “Gan-based disentanglement learning for chest x-ray rib suppression,” Medical Image Analysis, 2022: 102369.

2021年全年被接收论文29

期刊12篇:包括IEEE Trans. Medical Imaging (IF: 10.05) 3篇、Medical Image AnalysisIF: 8.555篇(含2accepted)、Proceedings of the IEEE (IF: 10.96) 1篇,综述文章3篇。

会议17篇:包括MICCAI 10篇(MICCAI全球高产作者列第四,单篇首轮评分全球并列第二)、CVPR 2 篇、AAAI 1篇、IPMI1篇、IPCAI1篇。

综述文章3篇:

1. S. Kevin Zhou, H.Greenspan, C. Davatzikos, J.S. Duncan, B. van Ginneken, A. Madabhushi, J.L.Prince, D. Rueckert, and R.M. Summers, “A review of deep learning in medicalimaging: Imaging traits, technology trends, case studies with progress highlights,and future promises,” Proceedings of the IEEE, 2021.

2. S. Kevin Zhou, HoangNgan Le, Khoa Luu, Hien V. Nguyen, and Nicholas Ayache, “Deep reinforcementlearning in medical imaging: A literature review,” Medical Image Analysis,2021.

3. J. Li, J. Chen, Y Tang, C Wang, B Landman, and S. Kevin Zhou. Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. ArXiv 2206.01136.

项目:

  与讯飞医疗签订了智慧医疗联合实验室。








上一篇:下一篇: